

RESEARCH ON FLUID POWER AND HEAVY MACHINERY IN LABORATORY OF INTELLIGENT MACHINES, LUT UNIVERSITY

Professor, D.Sc (Tech.) Heikki Handroos

LUT University

Two Campus University 7500 students 1000 staff members (400PhD students) 2 Engineering Faculties + Business School

Among the world's top universities

10

The world's top 10 university in climate action (THE Impact Rankings, SDG 13)

Business

LUT Business School is the world's second best in research quality (THE World University Rankings by subject)

business and economics (176–200th)

- physical sciences (201–250th)
- engineering (251–300th)
- computer science (301–400th)

40

Among the world's top 40 in partnerships for the goals (THE Impact Rankings, SDG 17)

Technology

Social Sciences

BIOGRAPHY HEIKKI HANDROOS

- Prof. of Machine Automation and Head of Laboratory of Intelligent Machines since 1993.
- His research interests range from modeling, simulation and control of mechatronic systems to robotics, hybrid transmission and mobile machinery
- He has published about 300 scientific journal and conference papers in the field of mechatronics
- Supervised/co-supervised 38 Doctoral Dissertations (Lab total 40) and more than 200 M.Sc theses
- Has been responsible leader of academic and industrial R&D projects (tot. > 20M€)
- Co-founder of MeVEA Oy, Haptronics Oy, ThT Robotics Oy and Flowgait Oy
- Visiting Professor in University of Minnesota, National Defense Academy (Japan) and Peter the Great St Petersburg Polytechnic University
- Several Duties of Trust in ASME, IEEE and GFPS (FPNI)

FLOWGAIT

Mevea

Simulation solutions

LABORATORY OF INTELLIGENT MACHINES — MOST IMPORTANT RESEARCH IMPACTS

- Advance Modelling and Simulation methods for Mechatronic Systems
- Advanced Robotics technologies with Special Reference to Nuclear and Hazardous Environments (more than 20 years in EUROFusion programs)
- More than 300 scientific publications and 40 doctoral dissertations (end of 2024)
- >> Spin-offs
 - Mevea Oy (Training & R&D simulators)
 - THT Robotics (Robotic Handling for Web-Grocery)
 - Flowgait Oy (Horseback Riding Simulators)
 - Haptronics Oy (Haptic Interfaces for Heavy Machinery)

LIM PERSONNEL 12/2024

1 professor 2 associate professors, 3 post docs, 7Ph.D students + 5 research assistants

STATISTICS OF 40 PHD'S GRADUATED

Graduates By Original Nationality

STATISTICS OF PHD'S GRADUATED

RESEARCH IN HEAVY DUTY PARALLEL ROBOTICS

PARALLEL KINEMATIC MOTION PLATFORMS

HYDRAULIC

ELECTRIC

RESEARCH IN HEAVY DUTY PARALLEL ROBOTICS

Cadarache,

Institute Of Plasma Physics Chinese Academy Of Sciences

CFETR, Hefei

1. OILHYDRAULIC PROTOTYPE OF INTERSECTOR WELD/CUT ROBOT

2. 10-AXIS WATERHYDRAULIC PROTOTYPE

3. 10-AXIS ELECTRICALLY ACTUATED IWR

RESEARCH ON MODELLING, IDENTIFICATION, OBSERVATION AND CONTROL OF HYDRAULIC SERVOSYSTEMS

Robust control (Sliding) Mode, Backstepping) Identification (Differential) Evolution, Monte Carlo Markov Chain) >> Observation (Extended and uncentered Kalman Filters, Particle Filters) >> Fuzzy and neural control >> Tuning of controllers by AI

RESEARCH ON MORE ELECTRIC TRANSMISSION

INTEGRATED ELECTRO-HYDRAULIC ENERGY CONVERTERS – LUT IEHEC

- Supply hydraulic circuit with hydraulic power
- Energy regeneration (hydraulic energy → electrical energy)
- Maximum efficiency up to 90 %. Inverter efficiency is not included.

Parameter	Value
Output power	30 kW
Flow rate	100 lpm
Speed max	3000 rpm
Pressure max	380 bar
Weight	110 kg

INTEGRATED ELECTRO-HYDRAULIC ENERGY CONVERTERS – LUT COMEHEC

Nominal pressure, bar 200 Hydraulic machine displacement cm3/rev 19 Nominal flow rated, I/min 34.2 Hydraulic machine speed, n r/min 2000 Hydraulic machine rated power 7 kW (1000 r/min) Hydraulic machine type Fixed displacement bent axis motor/pump Rated hydraulic machine Torque, TN 68 Nm Gear ratio 1:3Gear efficiency estimate 0.95 Electric motor power 7 kW, S3 70 % Electric motor speed range0 – 6000 r/min Electric motor type 24-20 tooth-coil PMSM Pole pair number, p 10 Electric motor max speed nNmax, r/min 6000 Rated line-to-line voltage U 300 V @ 3000 r/min 400 V in field weakn.

Electro-hydraulic Actuator (Parker) under test

Electrification is the key, but

~35% efficiency

Electro-hydraulic system ~80% efficiency

Up to 8 actuators

Up to 8 pump-motor units

Costly and massive. How to optimize it?

Solution 1: Valveless actuation of the lift cylinder

Limitation:

Energy consumption, kJ

Advantages:

- Simplicity
- Compactness
- High efficiency
- Recuperation capabilities

Disadvantages:

- DCV throttling losses
- Puts a limitation on system pressure

Solution 2: Sequential actuation

- 1 EHA
- 2 On/off valve
- 3 Lift cylinder
- 4 Tilt cylinder
- 5 Pressure sensor
- 6 Pressure-relief valve
- 7 Directional control valve
- 8 Boost pump

Solution 2: Sequential actuation

Solution 2: Sequential actuation with a single EHA

Energy consumption per cycle

- *E* proposed system
- E^{DCV} LS-system with DCVs
- E^{EHC} system with independent EHCs

Advantages:

- Compactness
- High efficiency
- EHA operation within highefficiency range

Disadvantages:

• Cycle duration increases without switching optimization.

Path planning algorithm (modified A*) Learning phase f(n) = g(n) + h(n)**Evaluation function:** Energy consumed by a cylinder: Cost of the Heuristic $E_{cyl} = \int_0^T P(t)Q(t) dt$ (distance to the goal) path Normalized energy: $E_{K,R,L}[i, j, k] = \frac{E_{K,R,L}[i, j, k] + |\min_{\forall K,R,L}(E_{K,R,L})|}{|\min_{\forall K,R,L}(E_{K,R,L})| + \max_{\forall K,R,L}(E_{K,R,L})|}$ 1) Define the space of the possible crane tip positions 26 3D matrices containing 2) Mesh the space 3) Obtain energy matrices using simulations energy needed to move to a neighbor cell

THE MOST EFFICIENT PATH IN MANIPULATION

3-D Experiment example

ASME

The American Society of Mechanical Engineers ® ASME [®]

RESEARCH ON MODELLING AND SIMULATION OF HEAVY MACHINES

- Development of computational efficient models for hydraulic components
- Development of computational efficient models for electric components
- Combining multibody models and hydraulic/electric system models
- Hardware-in-the-loop simulation

RESEARCH ON MODELLING AND SIMULATION OF HEAVY MACHINES

- Embedded simulators in IIoT-systems
- Machine design by real-time digital twins
- Usability and Human-Machine-interface design
- Training AI with simulated data
- Mental and physical load assessment by using bio-signals and AI

LUTERGO LABORATORY R&D INCLUDING USABILITY

SIGNALS	
	· 0·····
	-9,6
	2.1
SampleName (0.0): Sim Time	120
SampleName (0.0): Input BoomLift	-0
SampleName (0.0): Mass in Hopper	1200
SampleName (0.0): Input Bucket	0
SampleName (0.0): Input Slew	-0
SampleName (0.0): Marker Left	-0
	.0
	-16
	-0
5SR: GSR Conductance (Shimmer GSR 600B)	4,8
SSR Peaks (Shimmer GSR 6008); Tonic signal (microSiemens)	4,8
	·0·····
SSR Peaks (Shimmer GSR_600B): Peak detected (binary)	-0
CG Heart Rate (6C54 ECG): Heart Rate	-72
ICG Momentary HRV (6C54 ECG): SDNN	40
SampleName (0.0): Marker Right	0
RESPONDENT ANNOTATIONS	
- Events	
- LB_LC_fast	
ive markers	
17:50 17:55 18:00 18:05 18:10	18

LUTERGO LABORATORY

- Studying multimodal feedback for remote operation (haptic and vibrational)
- Human-centric HMI-UX development using bio-signals (EMG, ECG, EEG etc.)
- Log crane and mini-excavator remote operation demonstrators

EMBEDDED DIGITAL TWINS IN IIOT-SYSTEMS

CFI

Use case: mobile log crane

LFI

DIGITAL TWIN WITH PARTICLE FILTER

DYNAMIC MODELLING & REAL – TIME SIMULATION OF ELECTRO-HYDRAULIC ACTUATORS

Nitin Panwar

Doctoral Researcher

Supervisors: Prof. Heikki Handroos

(DSc.) Victor Zhidhchenko

Research Outlook and Applications

- >> Current Focus:
 - >> Building high-fidelity real-time models of EHAs
 - >> Integrating PMSM models with hydraulic subsystems
 - >> Preparing for future HIL simulation
- >> Applications:
 - >> Off road construction equipment (e.g. PATU Crane)
 - >> Energy efficient hybrid systems
- >> Next Steps:
 - >> Experimental validation with real hardware
 - >> Integration with machine learning for adaptive control

Note: Note: <th< th=""><th>IATLAB R2024b - academic use</th><th>e</th><th></th><th></th><th></th><th></th><th></th></th<>	IATLAB R2024b - academic use	e					
<pre>Image: Control and the second a</pre>	HOME PLOTS	APPS EDITOR		iearch Do	curnentation	🔎 🐥 Nitin'	•
Image: Construction of the second of the	Open Save 🔒 Print •	e 🖌 🌳 🔶 Go To 🗘 Find 👻	Image: Windows Windows Image: Window Image: Windows Image: Windows<				ļ
$ \begin{array}{c c c c c c } \hline \begin{tabular}{c c c c c c c c c c c c c c c c c c c $	FLE	NRVIGATE	CODE ANALYZE SECTION BLN				*
$\begin{array}{c c c c c c c } \hline \hline \\ $		sers + z138120 + OneDrive -	UT Linversity * PATU_doubleEHA_INEF * PATU_BEACON *	-00 H	Washington	•	1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Name	al ParkerMotorCalling m	akonne ron onverskývilo jsobietný ježi jivilo jezikovný na matemátik zakladné kali k skola na se tere a se se s V Debe Mohr fall mil zakladní zakladní zakladní zakladní zakladní základní základní základní základní zakladní z		workspace		
10 Name 18 Comet, 18 Comet, 18 If and any constraints of the state of	m2m_Grouit_1_finalver A Miscellaneous Parker_Motor slok_output sloti	1 2 T 17	%	0	a, Jift A, Jift alfa alpha Bdk cil	0.0054 0.0079 0.1256 0.1852 1.5000e+09	^
$ \begin{array}{c} \begin{array}{c} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	FHA.ev finalEHA.asv finalPATUcating.asv HydraulicCylinderMod odefunCylinder.av PATUModeLasv unritted.ik.autosave	18 19 20 21 22	<pre>tspan = [0 1]; X From t=1 to t=10 with step size le-4 % options = odeset('NelTol', le-5, 'AbsTol', le-7, 'MaxStep',h); % options = odeset('MaxStep', le-6);</pre>		C_Coord_1 C_Coord_2 C_Coord_2.io C_Coord_ext_ C_Coord_ext_ C_Coord_green C_Coord_inne	8r4 double 5r5 double 6r5 double (9.2000.0.3000.0. (8.7600.0.2700.0. (24.9200.0.1183.0 (46.6400.0.6500.0	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	untitied1.sixautosave accumulator_dynamics Bulk_modulus.m Checkl/alveDynamics.m Checkl/alveDynamics.m Checkl/alveEnd_stop_for	23 24 25 28	%		C_Coord_lift_ C_Coord_load C_Coord_tilt_c C_Coord_tilt_c C_Coord_tilt_c C_Coord_tilt_c	[140,1.2380,0.03([180,2.0830,0.26] [59,1700,0.7410,([2,1.0500,0.7400, [1,2000,1.0900,0, [9,3000,1,1.4300,	
Data Sign of the second s	compute_pressure.m compute_Q.m compute_Q.acc.m cylinder_end_force.m CylinderinetOrificePost CylinderinetOrificeRodS.	29 30 31 = 32	theta_i_init = pi/6; % Example: 30 degrees in radians theta_2_init = pi/4; % Example: 45 degrees in radians % y = 0.01; % Example displacement (m) % Q_piston = 0.002; % Flow rate into the piston chamber (m*3/s) % O end = 0.0015; % Flow rate into the piston chamber (m*3/s)		C_Coord_HILE. C_Coord_HILE. C_Coord_HILE. C_Coord_HILE. d_h_lift d_lift D_lift	(0.3400,1.2300,1. (1.1.1000,1.5800, (18,1.3700,1.9670, (2,1.6550,2.3800, 0.0127 0.0560 0.1000	4
1 H 4 4.5150 4 H im 4.5150 6 K) EHA.m exter_solver.m finalEHA.m friction_model.m ils	34 35 36 37	<pre>m load = 100 + 3 (\$ Piston diameter, m m load = 100 D_lift = 100e-3; % Piston diameter, m d_lift = 56e-3; % Road diameter, m % H_lift = 535e-3; % Max piston position</pre>		F_Coulomb F_static PV1 PV2 PV3 9 h	600 10000 4000 0 9.8100 1.0000e-07	5
	elect a file to view details	38 (H lift	0.5350	~ ₆

CAD Model, Laboratory of Intelligent Machines, LUT University

REMOTE OPERATION

HAPTIC INTERFACE

- Haptic joystics with user interface
- Adjustable vibration frequency and amplitude
- Adjustable continuous force feedback
- Can be used in simulators and real machine control
- Blindfolded operation of a log crane demonstrated

HAPTIC INTERFACE

Thank you for your attention!

LUT University

Contact: Prof. Heikki Handroos +358 40 510 7599 heikki.handroos@lut.fi